General conditions 6 - Turing instability
Nondimensionalise the reaction-diffusion equations to the form

$$
\begin{aligned}
& u_{t}=\gamma f(u, v)+\nabla^{2} u, \\
& v_{t}=\gamma g(u, v)+d \nabla^{2} v
\end{aligned}
$$

Where $d=\frac{D_{B}}{D_{A}}$ is the diffusion ratio.
Also, γ is a useful scaling constant that has to do with the size of the spatial domain. Also, assume no-flux boundary conditions

$$
(\vec{n} \cdot \nabla)\binom{u}{v}=0 \quad \text { on } \quad \partial B
$$

Where ∂B is the closed boundary of the domain B and \vec{n} is unit outward normal. And, there is some initial condition $u(\vec{r}, 0)$ and $v(\vec{r}, 0)$.

Note: We are interested in positive solutions, because we wort to keep the system biologically relevant.
(1) First, assume no spatial variation, so that u and v are only finctoins of t. Then,

$$
\begin{aligned}
& u_{t}=\gamma f(u, v), \\
& v_{t}=\gamma g(u, v) .
\end{aligned}
$$

Set

$$
\vec{\omega}=\binom{u-u_{0}}{v-v_{0}},
$$

where $\left(u_{0}, v_{0}\right)$ is a stecidy state.
If we linearise for small $|\overrightarrow{\mathrm{h}}|$, we get

$$
\vec{w}_{t}=\gamma A \vec{w}
$$

where $A=\left.\left[\begin{array}{cc}f_{u} & f_{v} \\ g_{u} & g_{v}\end{array}\right]\right|_{u_{0}, v_{0}}$.
Looking for solutions of the form $\vec{w} \propto e^{\lambda t}$, we get the characteristic equation

$$
\begin{aligned}
& O=\operatorname{de}+(\gamma A-\lambda I) \\
& 0=\lambda^{2}-\gamma\left(f_{n}+g_{v}\right) \lambda+\gamma^{2}\left(f_{u} g_{v}-f_{v} g_{n}\right)
\end{aligned}
$$

Note that we mean $f_{n}\left(u_{0}, v_{0}\right), \ldots$

Linear stability occurs when

$$
\begin{aligned}
& \operatorname{tr} A=f_{u}+g_{v}<0 \quad \text { and } \\
& |A|=f_{u} g_{v}-f_{v} g_{u}>0
\end{aligned}
$$

(2) Now, consider the system

$$
\begin{aligned}
& u_{t}=\gamma f(u, v)+\nabla^{2} u, \\
& v_{t}=\gamma g(u, v)+d \nabla^{2} v .
\end{aligned}
$$

Set $\vec{w}=\binom{u-u_{0}}{v-v_{0}}$
and linearise to get

$$
\begin{equation*}
\stackrel{\rightharpoonup}{w}_{t}=\gamma A \stackrel{\rightharpoonup}{w}+D \nabla^{2} \vec{\omega} \tag{A}
\end{equation*}
$$

where $D=\left[\begin{array}{ll}1 & 0 \\ 0 & d\end{array}\right]$.
Let $W(\vec{r})$ be the time-independent solution of the spatial eigenvalue problem

$$
\begin{equation*}
\nabla^{2} W+k^{2} W=0 \tag{B}
\end{equation*}
$$

with no-tlux boundoy conditions.

The eigenvalue k is called the wave number and $1 / k$ is proportional to the wavelength.
Since the equation is linear, we look Nor solutions of the form

$$
\stackrel{\rightharpoonup}{w}(\vec{r}, t)=\sum_{k} c_{k} e^{\lambda_{k} t} W_{k}(\vec{r})
$$

Note that λ depends on k.
Constants C_{k} are determined by Fourier expansion of initial conditions.

Substituting $e^{\lambda t} W_{k}(\vec{r})$ into A and (B), we get

$$
\lambda e^{\lambda t} W_{k}=\gamma A e^{\lambda t} W_{k}+D \nabla^{2}\left(e^{\lambda t} W_{k}\right)
$$

$$
\Rightarrow \lambda W_{k}=\gamma A W_{k}-D k^{2} W_{k}
$$

Nontrivial solutions satisfy the characteristic equation

$$
\begin{aligned}
O & =\left(\lambda I-\gamma A+D k^{2}\right) \\
& =\lambda^{2}+\lambda\left(k^{2}(l+d)-\gamma\left(f_{u}+g_{\nu}\right)\right)+h\left(k^{2}\right)
\end{aligned}
$$

where $h\left(k^{2}\right)=d k^{4}-\gamma\left(d f_{u}+g_{v}\right) k^{2}+\gamma^{2}|A|$.

If $k=0$, the charocteristc equation reduces to

$$
0=\lambda^{2}-\gamma\left(f_{u}+g_{\nu}\right) \lambda+\gamma^{2} / A /
$$

which is the some as in case (1) without spatial effects. We assumed this system is stable.

To have the steady state be unstable due to spatial disturbances, we have to find values of $k \neq 0$ for which

$$
\operatorname{Re}(\lambda(k))>0 .
$$

for this, we need

$$
k^{2}(l+d)-\gamma\left(f_{u}+q_{v}\right)<0 \quad \text { or } h\left(k^{2}\right)<0 .
$$

We have $t-A=f_{u}+g_{v}<0$ for (1), and we know $k^{2}(1+d)>0$ for all $k \neq 0$, so

$$
k^{2}(1+d)-\gamma\left(f_{u}+q-\right)>0
$$

so we reed to look for k such that $h\left(k^{2}\right)<0$.
Recall from (1), we required that

$$
|A|>0 \quad \text { and } \quad \text { t- } A=f_{u}+g_{v}<0 \text {. }
$$

Then,

$$
\begin{aligned}
& h\left(k^{2}\right)=d k^{4}-\gamma\left(d f_{n}+g_{v}\right) k^{2}+\gamma^{2}|A|<0 \\
& \Rightarrow \quad d f_{u}+g_{v}>0 .
\end{aligned}
$$

Since $f_{u}+g_{r}<0$, it follows that $d \neq 1$ and fur and gr have opposite signs.

For convenience, let's say $d>/$ and $f_{u}>0$ and $g_{v}<0$. (The situation is symmetric otherwise.)

To have $h\left(k^{2}\right)<0$ for some k, the misiman $h_{\text {min }}$ must be negative, so we find $h_{\text {min }}$:

$$
\begin{align*}
\frac{d h}{d\left(k^{2}\right)} & =2 d k_{m}^{2}-\gamma\left(d f_{u}+g_{v}\right)=0 \\
& \Rightarrow k_{m}^{2}=\gamma \frac{d f_{u}+g_{v}}{2 d}
\end{align*}
$$

So,

$$
\begin{aligned}
h_{m i n} & =d k_{m}^{4}-\gamma\left(d f_{u}+g_{\nu}\right) k_{m}^{2}+\gamma^{2}|A| \\
& =\gamma^{2}\left(|A|-\frac{\left(d f_{u}+g_{v}\right)^{2}}{4 d}\right)
\end{aligned}
$$

Thus, $h\left(k^{2}\right)<0$ for some $k^{2} \neq 0$, when

$$
\frac{\left(d f_{u}+g_{n}\right)^{2}}{4 d}>|A|
$$

At the critical point, we have $h_{\text {min }}=0$, so $|A|=\frac{\left(d f_{u}+g_{v}\right)^{2}}{4 d}$

You can solve this last (quadratic) equation
to kid the critical diffusion rato d_{c} in
terms of $f_{u}, f_{n}, g_{u}, g_{v}$.
From the two * equations, the critical ware number k_{c} is given by

$$
k_{c}^{2}=\gamma \frac{d_{c} f_{u}+q_{c}}{2 d_{c}}=\gamma \sqrt{\frac{|A|}{d_{c}}}
$$

